4 Maximum Entropy Production and Non-equilibrium Statistical Mechanics

نویسنده

  • Roderick C. Dewar
چکیده

Over the last 30 years empirical evidence in favour of the Maximum Entropy Production (MEP) principle for non-equilibrium systems has been accumulating from studies of phenomena as diverse as planetary climates, crystal growth morphology, bacterial metabolism and photosynthesis. And yet MEP is still regarded by many as nothing other than a curiosity, largely because a theoretical justification for it has been lacking. This chapter offers a non-mathematical overview of a recent statistical explanation of MEP stemming from the work of Boltzmann, Gibbs, Shannon and Jaynes. The aim here is to highlight the key physical ideas underlying MEP. For non-equilibrium systems that exchange energy and matter with their surroundings and on which various constraints are imposed (e.g., external forcings, conservation laws), it is shown that, among all the possible steady states compatible with the imposed constraints, Nature selects the MEP state because it is the most probable one, i.e., it is the macroscopic state that could be realised by more microscopic pathways than any other. That entropy production is the extremal quantity emerges here from the universal constraints of local energy and mass balance that apply to all systems, which may explain the apparent prevalence of MEP throughout physics and biology. The same physical ideas also explain self-organized criticality and a result concerning the probability of violations of the second law of thermodynamics (the Fluctuation Theorem), recently verified experimentally. In the light of these results, dissipative structures of high entropy production, which include living systems, can be viewed as highly probable phenomena. The prospects for applying these results to other types of non-equilibrium system, such as economies, are briefly outlined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information theory explanation of the fluctuation theorem, maximum entropy production and self- organized criticality in non-equilibrium stationary states

Jaynes’ information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. First, it is shown that the probability distribution p of the underlying microscopic phase space trajectories over a time interval of length τ satisfies p ∝ exp(τσ /2kB) where σ is the time-averaged rate of entropy production of . Three consequences of this result ...

متن کامل

Maximum Entropy Production as an Inference Algorithm that Translates Physical Assumptions into Macroscopic Predictions: Don't Shoot the Messenger

Is Maximum Entropy Production (MEP) a physical principle? In this paper I tentatively suggest it is not, on the basis that MEP is equivalent to Jaynes’ Maximum Entropy (MaxEnt) inference algorithm that passively translates physical assumptions into macroscopic predictions, as applied to non-equilibrium systems. MaxEnt itself has no physical content; disagreement between MaxEnt predictions and e...

متن کامل

Mathematical theory of non-equilibrium quantum statistical mechanics

We review and further develop a mathematical framework for non-equilibrium quantum statistical mechanics recently proposed in [JP4, JP5, JP6, Ru3, Ru4, Ru5, Ru6]. In the algebraic formalism of quantum statistical mechanics we introduce notions of non-equilibrium steady states, entropy production and heat fluxes, and study their properties. Our basic paradigm is a model of a small (finite) quant...

متن کامل

The maximum entropy production principle: two basic questions.

The overwhelming majority of maximum entropy production applications to ecological and environmental systems are based on thermodynamics and statistical physics. Here, we discuss briefly maximum entropy production principle and raises two questions: (i) can this principle be used as the basis for non-equilibrium thermodynamics and statistical mechanics and (ii) is it possible to 'prove' the pri...

متن کامل

Theory for non-equilibrium statistical mechanics.

This paper reviews a new theory for non-equilibrium statistical mechanics. This gives the non-equilibrium analogue of the Boltzmann probability distribution, and the generalization of entropy to dynamic states. It is shown that this so-called second entropy is maximized in the steady state, in contrast to the rate of production of the conventional entropy, which is not an extremum. The relation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004